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Abstract. We discuss the Bloch-state solutions of the stationary Gross-Pitaevskii equation and of the
Bogoliubov equations for a Bose-Einstein condensate in the presence of a one-dimensional optical lattice.
The results for the compressibility, effective mass and velocity of sound are analysed as a function of the
lattice depth and of the strength of the two-body interaction. The band structure of the spectrum of
elementary excitations is compared with the one exhibited by the stationary solutions (“Bloch bands”).
Moreover, the numerical calculations are compared with the analytic predictions of the tight binding
approximation. We also discuss the role of quantum fluctuations and show that the condensate exhibits 3D,
2D or 1D features depending on the lattice depth and on the number of particles occupying each potential
well. We finally show how, using a local density approximation, our results can be applied to study the
behaviour of the gas in the presence of harmonic trapping.

PACS. 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid
flow – 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons,
vortices and topological excitations

1 Introduction

Cold atoms in optical lattices exhibit phenomena typical
of solid state physics like the formation of energy bands,
Bloch oscillations, and Josephson effects. Many of these
phenomena have been already the object of experimen-
tal and theoretical investigation in Bose-Einstein conden-
sates. For deep potential wells further important effects
take place like the transition from the superfluid to the
Mott insulator phase [1,2].

The purpose of this paper is to study some structural
properties of interacting Bose-Einstein condensed dilute
gases at T = 0 in the presence of 1D periodic poten-
tials generated by laser fields (1D optical lattices). Un-
less the confinement in the radial direction is very tight,
the transition to the insulator phase in 1D optical lat-
tices is expected to take place only for extremely deep
potential wells. There is consequently a large range of po-
tential depths where the gas can be described as a fully
coherent system, in the framework of the mean field Gross-
Pitaevskii approach to the order parameter.

We will explicitly discuss the change in the behaviour
of the system as a function of the optical potential depth,
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ranging from the uniform gas (absence of optical lattice)
to the opposite regime of deep wells separated by high bar-
riers (tight binding limit). Special emphasis will be given
to the role of two-body interactions, whose effects will be
addressed by varying the average density n.

An important feature produced by the periodic po-
tential is the occurrence of a typical band structure in
the energy spectra. In this paper we will discuss different
manifestations of such a band structure, including:

– the energy per particle εj(k) of stationary Bloch-wave
configurations consisting in the motion of the whole
condensate and carrying a current constant in time
and uniform in space (“Bloch bands”). This energy
is naturally parametrized as a function of the quasi-
momentum k which, together with the band index j
(j = 1, 2, ...), is the proper quantum number of these
states;

– the chemical potential

µj(k) =
∂[nεj(k)]

∂n
, (1)

of the same stationary configurations, where n is the
average density of the sample. The chemical potential
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plays a crucial role in the determination of the equation
of state and emerges as a natural output of the solution
of the Gross-Pitaevskii equation (see Eq. (10) below);

– the spectrum �ωj(q) of the elementary excitations
(“Bogoliubov bands”) carrying quasi-momentum q.
The elementary excitations are small perturbations of
the system and in general can be calculated with re-
spect to each stationary configuration of quasimomen-
tum k. In this paper we will limit the discussion to the
elementary excitations built on top of the groundstate
configuration (k = 0). They can be determined by
solving the linearized Gross-Pitaevskii equations (see
Eqs. (25, 26)).

The three band spectra εj , µj and �ωj represent dif-
ferent physical quantities and have the same dependence
on quasimomentum only in the absence of two body inter-
actions. Due to the periodicity of the problem the quasi-
momentum can be restricted to the first Brillouin zone.
Still it is often convenient to consider all values of quasi-
momentum to emphasize the periodicity of the energy
spectra in quasi-momentum space.

In Section 2, we discuss the equation of state and the
Bloch bands, assuming uniform confinement in the radial
direction. Special emphasis is given to the behaviour of
the compressibility and the effective mass. The compress-
ibility κ is defined by the thermodynamic relation

κ−1 = n
∂µ

∂n
, (2)

where µ is the chemical potential relative to the ground-
state solution of the Gross-Pitaevskii equation (µ ≡
µj=1(k = 0)). For systems interacting with repulsive
forces, the optical trapping reduces the compressibility of
the system since the effect of repulsion is enhanced by the
squeezing of the condensate wavefunction in each well.
The effective mass is defined through the curvature of the
lowest (j = 1) energy band

1
m∗(k)

=
∂2ε

∂k2
· (3)

Here and in the following, we omit the band index j when
we refer to the lowest band (j = 1). The current flowing
along the direction of the optical lattice, is fixed by the
relation

I(k) = n
∂ε

∂k
, (4)

and in the long wavelength limit k → 0, one finds I →
nk/m∗, where we have used the notation m∗ ≡ m∗(k = 0).
Equivalently, one has

ε(k) −→
k → 0 ε(k = 0) +

k2

2m∗ · (5)

For small intensities of the laser field the effective mass m∗
approaches the bare value m. Instead, for large intensities
the effective mass is inversely proportional to the tunnel-
ing rate through the barrier separating neighbouring po-
tential wells and is strongly enhanced with respect to the
bare value.

Based on the knowledge of the compressibility and of
the effective mass, one can calculate the sound velocity
according to the thermodynamic relation

c =
1√
κm∗ · (6)

This quantity fixes the slope of the lowest Bogoliubov
band at low quasi momenta.

In Section 3, we discuss the behaviour of the elemen-
tary excitations. The excitation spectrum (Bogoliubov
spectrum) is obtained from the solution of the linearized
time-dependent Gross-Pitaevskii equation and develops
energy bands �ωj(q) periodic in quasi-momentum space.
From the same solutions one can calculate the excita-
tion strengths Zj(p) relative to the density operator and
hence the dynamic structure factor S(p, ω) [3]. Here, p
and �ω are the momentum and the energy transferred by
a weak external probe. Differently from the Bogoliubov
energies �ωj, the strengths Zj(p), and S(p, ω), are not
periodic functions of p, putting in clear evidence the dif-
ference between momentum and quasi-momentum.

We will often compare our numerical results with the
predictions of the so called tight binding approximation,
which is reached when the intensity of the laser field gen-
erating the optical lattice is so high that only the overlap
between the wavefunctions of nearest-neighbour conden-
sates plays a role. In the tight binding limit, the lowest
Bloch and Bogoliubov bands take analytic forms that will
be discussed explicitly.

In Section 4, we study the effect of the lattice on the
quantum depletion of the condensate and comment on the
validity of Gross-Pitaevskii and Bogoliubov theory. De-
pending on the parameters of the problem, we distinguish
between different configurations which show 3D, 2D or 1D
features.

Finally, in Section 5 we include the presence of an addi-
tional harmonic trapping. This is achieved by employing a
local density approximation to treat the inhomogeneity of
the density profile due to the harmonic confinement. Im-
portant applications concern the frequencies of collective
oscillations.

2 Compressibility and effective mass

The aim of this section is to calculate the compressibility
and the effective mass as a function of the average den-
sity of the gas and of the depth of the optical potential.
Using these quantities, we will also calculate the velocity
of sound.

We consider the following geometry: along the
z-direction the atoms feel the periodic potential created
by two counterpropagating laser fields, while the system is
uniform in the transverse direction. The important length,
momentum and energy scales of the problem are: the lat-
tice spacing d = π/kopt related to the wavevector kopt of
the laser field in the lattice direction, the Bragg momen-
tum qB = �kopt = �π/d which identifies the edge of the
Brillouin zone and the recoil energy ER = �

2π2/2md2,
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corresponding to the energy gained by an atom at rest by
absorbing a lattice photon.

The trapping potential generated by the optical field
can be simply written in the form

V (z) = sER sin2
(πz

d

)
, (7)

where s is a dimensionless parameter which denotes the
lattice depth in units of the recoil energy ER.

The parameter characterizing the role of interactions
in the system is gn, defined as the two-body coupling con-
stant g = 4π�

2a/m times the 3D average density n. Here a
is the s-wave scattering length which will be always as-
sumed to be positive. Typical values of the ratio gn/ER

used in recent experiments [4–7] range from 0.02 to 1.
Since the density is uniform in the transverse direction,

the transverse degrees of freedom decouple from the axial
ones and the stationary Gross-Pitaevskii equation can be
reduced to a 1D equation of the form
[
− �

2

2m

∂2

∂z
+ sER sin2

(πz

d

)
+ gnd|ϕ(z)|2

]
ϕ(z) = µϕ(z)

(8)
where the order parameter ϕ is normalized according to∫ d/2

−d/2
|ϕ(z)|2dz = 1.

In spite of its non-linearity, equation (8) permits solu-
tions in the form of Bloch waves

ϕjk(z) = eikz/�ϕ̃jk(z), (9)

where k is the quasimomentum, j is the band index and
the function ϕ̃jk(z) is periodic with period d. Notice that
equation (9) does not exhaust all the possible stationary
solutions of the Gross-Pitaevskii equation [8]. The Gross-
Pitaevskii equation (8), rewritten in terms of the func-
tions ϕ̃jk(z), reads

[
1

2m
(−i�∂z + k)2 + sERsin2

(πz

d

)

+ gnd|ϕ̃jk(z)|2
]
ϕ̃jk(z) = µj(k)ϕ̃jk(z). (10)

From the solution of equation (10) one gets the func-
tions ϕ̃jk(z) and the corresponding chemical poten-
tials µj(k).

The energy per particle εj(k) can be calculated using
the expression

εj(k) =
∫ d/2

−d/2

ϕ̃∗
jk(z)

[
1

2m
(−i�∂z + k)2

+sERsin2 (z) +
1
2
gnd|ϕ̃jk(z)|2

]
ϕ̃jk(z)dz. (11)

and differs from the chemical potential µj(k). In fact by
multiplying equation (10) by ϕ̃∗

jk and integrating, one

finds the expression

µj(k) =
∫ d/2

−d/2

ϕ̃∗
jk(z)

[
1

2m
(−i�∂z + k)2

+ sERsin2 (z) + gnd|ϕ̃jk(z)|2
]
ϕ̃jk(z)dz (12)

for the chemical potential which coincides with equa-
tion (11) only in absence of the interaction term. In gen-
eral, µj and εj are related to each other by equation (1).

The solution of equation (10) for k = 0 and j = 1 gives
the ground state of the system. This state corresponds to
a condensate at rest in the frame of the optical lattice. In-
stead the solutions of equation (10) with k �= 0, describe
states of the system where all the atoms, occupying the
same single-particle wavefunction, move together with re-
spect to the optical potential giving rise to the constant
current (4). Experimentally such states can be created by
turning on adiabatically the intensity of a lattice mov-
ing at fixed velocity [4]. In this way, it is possible to map
higher Brillouin zones onto higher bands.

Results for the Bloch bands (11) are shown in Fig-
ure 1 for s = 5 and gn/ER = 0, 0.1 and 0.5. The effect of
interactions for these parameter values can be hardly dis-
tinguished in the energy band structure. It can be made
more evident by plotting the group velocity

v =
∂ε(k)
∂k

(13)

as a function of the quasi-momentum. For gn = 0.5ER one
finds a difference in the group velocity of about 30% with
respect to the non interacting case. The quantity plotted
in Figure 1b is accessible experimentally through Bloch
oscillations experiments [9]. In this context, it is important
to note that the Bloch states (9) with k �= 0 can become
energetically or dynamically unstable depending on the
choice of the values for s and gn (see for example [10–14]).
Note also that for values of gn ≥ s one encounters loops
(“swallow tails”) in the band structure at the band edge
of the lowest band [12,15] and, at even smaller values of
gn, at the center of the first excited band [12]. For the
values of gn we have considered, these swallow tails exist
only for very small values of the lattice depth s.

Let us now focus on the properties of the ground state
(k = 0, j = 1). By solving numerically equation (10) and
calculating the chemical potential, it is straightforward to
evaluate the inverse compressibility (2) as a function of
the relevant parameters of the problem. The results are
plotted in Figure 2 as a function of gn for s = 0, 5, 10.
The case s = 0 is the uniform case, where the equation
of state is µ = gn and κ−1 = gn. In the presence of
the optical lattice, we predict a deviation from this linear
dependence on density. One finds an increase of the inverse
compressibility with s, which is a direct consequence of
the localization of the wavefunction at the bottom of the
wells produced by the optical lattice. When the effect of
two body interactions on the wavefunction is negligible
one can account for this increase through the simple law
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Fig. 1. (a) Lowest three Bloch bands for s = 5, gn = 0
(solid line), 0.1ER (dashed line) and 0.5ER (dash-dotted line).
The energy of the groundstate (k = 0) has been subtracted;
(b) group velocity for the same parameters as in (a).

κ−1 = g̃(s)n. The effective coupling constant g̃(s) depends
only on the lattice depth s and takes the explicit form

g̃ = gd

∫ d/2

−d/2

ϕ4
gn=0dz, (14)

where ϕgn=0 is the groundstate solution of equation (8)
for gn = 0. It is correct to describe κ−1 with a linear de-
pendence on the density only for small interaction param-
eters gn. For higher values of the interactions the slope
of the curves tends to decrease. This is due to the fact
that interactions tend to broaden the order parameter in
each well and hence counteract the effect produced by
the optical lattice. Numerical results for κ−1/gn are pre-
sented in Figure 3 and compared with the density inde-
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Fig. 2. Inverse compressibility κ−1 = n∂µ/∂n as a function of
gn/ER for s = 0 (solid line), s = 5 (dashed line) and s = 10
(dashed-dotted line).
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Fig. 3. κ−1/gn for gn = 0.1ER (dashed line) and gn = 0.5ER

(dashed-dotted line) as a function of the lattice depth s; com-
parison with the effective coupling constant g̃/g defined in
equation (14) (solid line).

pendent quantity g̃/g (solid line), confirming that in gen-
eral the compressibility does not depend linearly on the
interaction. However for large s the density dependence
of κ−1/gn becomes less and less important and the ex-
pression κ−1(n, s) = g̃(s)n becomes applicable in a larger
range of gn-values.

Let us now determine the effective mass by studying
the low-k behaviour of the lowest band ε(k). The results
for m∗ = m∗(k = 0) are shown in Figure 4. For s → 0, the
effective mass tends to the bare mass m. Instead for large s
the effective mass increases strongly due to the decreased
tunneling between neighbouring wells of the optical po-
tential. The effect of the interactions is to decrease the
value of m∗ as a consequence of the broadening of the
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Fig. 4. Effective mass as a function of lattice depth s for
gn = 0 (solid line), gn = 0.1ER (dashed line) and gn = 0.5ER

(dashed-dotted line).

wavefunction caused by the repulsion, which favours tun-
neling, contrasting the effect of the lattice potential. In
fact, the effective mass is fixed by the tunneling proper-
ties of the system, which are exponentially sensible to the
behaviour of the wavefunction in the region of the barri-
ers. Then, any small change in the wavefunction due to
interactions can have a significant effect on the effective
mass.

The two quantities calculated above, compressibility
and effective mass, can be used to calculate the sound ve-
locity using relation (6) [12,17]. The corresponding results
are shown in Figure 5. We find that the sound velocity de-
creases as the lattice is made deeper. This is due to the
fact that the increase of the effective mass is more impor-
tant than the decrease of the compressibility κ. The solid
line in Figure 5 shows that decreasing the interactions the
sound velocity approaches the law c =

√
g̃n/m∗

gn=0, where
m∗

gn=0 is the effective mass calculated with gn = 0. The
sound velocity is in principle measurable by studying the
velocity of a wavepacket propagating in the presence of the
optical potential. This could be done for example by fol-
lowing the experimental procedure used in [18]. Yet note
that in deep lattices, non linear effects are expected to be
important also for small amplitude perturbations [11].

Most of the results discussed above can be qualita-
tively understood by working in the so called tight bind-
ing approximation which becomes more and more accu-
rate as the intensity of the laser field increases. Within
the tight binding approximation we can derive analytic or
semi-analytic expressions for the energy bands and conse-
quently for the effective mass, compressibility and sound
velocity.

Using Bloch’s theorem, we can write the condensate in
the lowest band as

ϕk(z) =
∑

l

eikld/�f(z − ld), (15)

0 5 10 15 20 25 30
0

0.25

0.5

0.75

1

 s

 c
 / 
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Fig. 5. Sound velocity as a function of the potential depth s
divided by the sound velocity in the absence of the optical
potential (s = 0) for gn = 0.02ER (solid line), gn = 0.1ER

(dashed line) and gn = 0.5ER (dashed-dotted line).

where l is the index of the well and f are the Wannier
functions. The function f(z) is normalised to unity and
is orthogonal to the functions centered at different sites.
In general, it depends on two-body interactions and hence
on the density. Equation (15) holds for any depth of the
optical potential. However, in the tight binding regime,
f(z) is a well localized function. This provides important
simplifications in the calculation of the relevant quantities,
since only nearest-neighbour overlap integrals have to be
considered.

In our derivation of the tight binding results we will
include also the interaction terms in the Hamiltonian.
By substituting equation (15) into (10) and using defi-
nition (11) it follows, after some straightforward algebra,
that the energy per particle takes the simple tight-binding
form

ε(k) = ε − δ cos
(

kd

�

)
, (16)

where ε =
∫

f(z)
[
−�

2∂2
z

2m + V (z) + gnd
2 f2(z)

]
f(z)dz is an

energy offset, which depends on s and gn but not on k,
and δ is the tunneling parameter defined as

δ = −2
∫

f(z)
[
−�

2∂2
z

2m
+ V (z) + 2gndf2(z)

]
f(z−d)dz.

(17)
Using the same approximations, the chemical potential
takes the form

µ(k) = µ0 − δµ cos
(

kd

�

)
, (18)

where µ0 =
∫

f(z)
[
−�

2∂2
z

2m + V (z) + gndf2(z)
]
f(z)dz

and δµ = δ − 4gnd
∫

f3(z)f(z − d)dz. To derive
equations (16, 18), we have kept terms of the order∫

f3(z)f(z − d)dz and neglected terms of the order
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Fig. 6. Lowest Bloch band at gn = 0.5ER for different values
of the potential depths: s = 1 (a), s = 5 (b) and s = 10 (c).
The solid lines are obtained by evaluating equation (11) using
the numerical solution of equation (10) while the dashed lines
refer to the tight binding expression (16). The energy of the
groundstate (k = 0) has been subtracted.

∫
f2(z)f2(z − d)dz, which, for localized functions, turn

out to be much smaller.
Note that δ and δµ depend on density both explic-

itly and implicitly through the density dependence of f
(see Eq. (17)). In all situations considered in this work,
contributions involving ∂f/∂n can be safely neglected.
This approximation allows us to identify the quantity
δµ − δ = −4gnd

∫
f3(z)f(x − d)dz with n∂δ/∂n.

To check the accuracy of the tight binding approxima-
tion, one can compare the numerical results for the first
Bloch band with expression (16). The parameter δ is re-
lated to the curvature of the band at k = 0, i.e. to the
effective mass defined in equation (3), through the impor-
tant relation [19]

δ =
2
π2

m

m∗ER. (19)

Hence, we can evaluate (16) by using the numerical results
for the effective mass discussed above (see Fig. 4). In this
way, we automatically include the correct density depen-
dence of the tunneling parameter δ. In Figure 6, we com-
pare the first Bloch energy band with its tight binding ap-
proximation for gn = 0.5ER and various values of s. The
comparison shows that, for this value of the interactions,
the tight binding approximation is already quite good for
s = 10 and becomes better and better for increasing s.

Using equation (18) for k = 0, we can also derive an
expression for the inverse compressibility, which reads

κ−1 = gnd

∫
f4(z)dz + 8gnd

∫
f3(z)f(z − d)dz, (20)

where contributions due to ∂f/∂n have been neglected,
as previously. Since

∫
f3(z)f(z − d)dz is normally much

smaller than
∫

f4(z)dz, the on-site contribution to the
inverse compressibility (first term in (20)) is usually the
leading term.

A tight-binding expression for the density-independent
effective coupling constant g̃ (14) is obtained from (20) by
replacing f with the Wannier function fgn=0 of the non-
interacting system. Then κ−1 is linear in the density and
κ−1/n can be identified with g̃. Neglecting the overlap
contribution, g̃ takes the form [17]

g̃ = gd

∫
f4

gn=0(z)dz. (21)

This shows that in the tight binding regime, the effective
coupling constant g̃ can be safely estimated replacing the
Bloch state ϕgn=0 in equation (14) by the Wannier func-
tion fgn=0.

Deep in the tight binding regime, the function f(z)
can be conveniently approximated by a Gaussian f =
exp(−z2/2σ2)/π1/4

√
σ, where the width σ is chosen such

as to satisfy the equation

− d3

π3

1
σ3

+ s
π

d
σ − s

π3

d3
σ3 − 1

2
gn

ER

√
π

2
d2

π2

1
σ2

= 0 (22)

accounting for the anharmonicities of O(z4) of the poten-
tial wells and for the broadening effect of repulsive two
body interactions. Within the Gaussian approximation,
the inverse compressibility (20) can be rewritten in the
simplified form

κ−1 =
gnd√
2πσ

, (23)

where we have neglected the contribution arising from the
overlap of neighbouring wavefunctions. If we neglect the
interaction term in equation (22), we obtain κ−1 = g̃n,
with g̃ = gd/

√
2πσ and σ = s−1/4(1 + 1/4

√
s)d/π. For

s = 10, gn = 0.5ER the approximation (23) differs from
the exact value of κ−1 by less than 1%.

Note that even though the Gaussian approximation
is useful in estimating the compressibility at high s, it
can not be employed to calculate the effective mass or,
equivalently, the tunneling parameter δ, which requires a
more accurate description of the tails of the function f .

3 Elementary excitations

In this section we study the spectrum of elementary ex-
citations. We will focus our attention on the excitations
relative to the ground state, i.e. to the solution of equa-
tion (10) with j = 1 (lowest band) and k = 0. To this
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aim we look for solutions of the time-dependent Gross-
Pitaevskii equation of the form

ϕ(z, t) = e−iµt/�

[
ϕ(z) + ujq(z)e−iωj(q)t + v∗jq(z)eiωj(q)t

]
,

(24)
where ujq and vjq describe a small perturbation with re-
spect to the groundstate condensate ϕ ≡ ϕj=1,k=0. At
first order in the perturbations, the time-dependent Gross-
Pitaevskii equation yields the Bogoliubov equations

[
−�

2∂2
z

2m
+ s ER sin2

(πz

d

)
− µ + 2gnd|ϕ|2

]
ujq(z)

+ gndϕ2vjq(z) = �ωj(q)ujq(z), (25)

[
−�

2∂2
z

2m
+ s ER sin2

(πz

d

)
− µ + 2gnd|ϕ|2

]
vjq(z)

+ gndϕ∗2ujq(z) = −�ωj(q)vjq(z). (26)

The solutions ujq and vjq are Bloch waves (ujq =
exp(iqz/�)ũjq(z) where ũjq is periodic with period d and
analogously for vjq). They are labeled by their band in-
dex j and their quasimomentum q belonging to the first
Brillouin zone. Hence, also the Bogoliubov spectrum ωj(q)
exhibits a band structure [20,21].

Similarities and differences with respect to the well-
known Bogoliubov spectrum in the uniform case (s = 0)
are immediate. As in the uniform case, interactions make
the compressibility finite, giving rise to a phononic regime
for long wavelength excitations (q → 0) in the lowest band.
In high bands the spectrum of excitations instead resem-
bles the Bloch dispersion (see Eq. (11)). The differences
are due to the fact that in the presence of the optical lat-
tice the Bogoliubov spectrum develops a band structure.
As a consequence, the dispersion is periodic as a function
of quasimomentum and different bands are separated by
an energy gap. In particular, the phononic regime present
at q = 0 is repeated at every even multiple of the Bragg
momentum qB. Moreover, the lattice period d emerges as
an additional physical length scale.

In Figure 7 we compare the Bologoliubov bands at
s = 1 for gn = 0 and gn = 0.5ER. In the interacting
case, one notices the appearance of the phononic regime
in the lowest band, while higher bands differ from the non-
interacting ones mainly by an energy shift.

In Figure 8 we compare the lowest Bogoliubov and
Bloch bands. Clearly, the lowest Bloch band is less af-
fected by the presence of interactions than the Bogoliubov
band. Recall that the Bogoliubov band gives the energy of
the elementary excitations while the Bloch band gives the
energy per particle of an excitation involving the whole
condensate.

The solid lines in Figure 9 show how the lowest
Bogoliubov band changes when the lattice depth is in-
creased at fixed interaction. At s = 1 (Fig. 9a), apart
from the formation of the energy gap close to q = qB, the
curve still resembles the dispersion in the uniform case:
both the phononic linear regime and the quadratic regime
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Fig. 7. Bogoliubov bands in the first Brillouin zone for s = 1,
gn = 0 (solid line) and gn = 0.5ER (dash-dotted line). Note
that for such a small potential, the gap between second and
third band is still very small.
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Fig. 8. Lowest Bloch band (dashed line) and lowest
Bogoliubov band (dash-dotted line) bands for s = 1 and
gn = 0.5ER compared with the energy band without inter-
actions for s = 1 (solid line). The groundstate energy has been
subtracted in the case of the Bloch band (dashed line) and of
the energy band without interactions (solid line).

are visible. When the potential is made deeper (s = 5, 10;
Figs. 9b and 9c), the band becomes flatter. As a conse-
quence, the quadratic regime disappears and the slope of
the phononic regime decreases. This reflects the behaviour
of the velocity of sound (see Fig. 5).
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Fig. 9. Lowest Bogoliubov band at gn = 0.5ER for different
values of the potential depths: s = 1 (a), s = 5 (b) and s =
10 (c). The solid lines are obtained from the numerical solution
of equations (25, 26) while the dashed lines refer to the tight-
binding expression (29).

Similarly to the Bloch energy and chemical potential
spectra, also for the Bogoliubov excitation spectrum we
can obtain an analytic expression in the tight binding
limit. We write the excitation amplitudes in the form

uq(z) = Uq

∑
l

eiqld/�f(z − ld), (27)

vq(z) = Vq

∑
l

eiqld/�f(z − ld), (28)

where f is the same function as in (15). Recall, that∫
dzf2 = 1. Using expression (15) for the order param-

eter, we find the result

�ωq =

√
2δsin2

(
qd

2�

)[
2
(

δ + 2n
∂δ

∂n

)
sin2

(
qd

2�

)
+ 2κ−1

]
(29)

for the excitation frequencies (lowest band), where δ and
κ−1 are the tunneling and inverse compressibility param-
eters defined respectively in (17) and (20). In the same

limit, the Bogoliubov amplitudes are

Uq =
εq + �ωq

2
√

�ωqεq

, (30)

Vq =
εq − �ωq

2
√

�ωqεq

, (31)

where ωq is given by equation (29) and εq = 2δsin2 (qd/2�)
captures the quasimomentum dependence of the Bloch
energy (compare with Eq. (16)). Note that in deriving
equations (30, 31), we have imposed the normalization
condition

∫ d/2

−d/2 |uq(z)|2 − |vq(z)|2dz = 1.
In expression (29) the density dependence of the spec-

trum shows up in three different ways:

– first of all, the parameter δ depends on interactions
as shown explicitly in Figure 4, where the quantity
m∗ ∝ 1/δ (see relation (19)) is plotted;

– second, κ−1 has a more general dependence on the
density than the one accounted for by the linear law
g̃n, as shown in Figure 3;

– third, a contribution due to the density derivative of δ
appears. However this term is always small: for small
interactions one has n∂δ/∂n � δ while for larger in-
teractions the inverse compressibility κ−1 dominates
both δ and n∂δ/∂n. However, as shown in [13,14] this
term can significantly affect the excitation frequency
calculated on top of a moving condensate.

Figure 9 compares the numerical data with the approx-
imate expression (29) evaluated using the parameters κ−1

and δ calculated in the previous section. The tunneling
parameter δ is obtained from the data for the effective
mass m∗ through equation (19). As already found for the
lowest Bloch band, for this value of gn, the agreement with
the tight binding expression is already good for s = 10.

It is possible to identify two regimes, where the
Bogoliubov spectrum can be described by further simpli-
fied expressions:

(I) for very large potential depth, the spectrum is dom-
inated by the second term in the square brackets of
equation (29). In fact, δ → 0 while κ−1 becomes
larger and larger as s increases. Hence, the spectrum
takes the form

�ωq ≈
√

δκ−1

∣∣∣∣sin
(

qd

2�

)∣∣∣∣ , (32)

both for large and small gn. Of course for large gn,
the proper density-dependence of δ and κ−1 has to
be taken into account in evaluating (32). Note that
the Bogoliubov band becomes very flat since δ de-
creases exponentially for large lattice depth s. Yet, its
height decreases more slowly than the lowest Bloch
band (16) whose height decreases linearly in δ. We
also point out that in the regime where equation (32)
is valid, the Bogoliubov amplitudes (Eqs. (30, 31))
become comparable in magnitude for all q in the first
Brillouin zone, even if the excitation spectrum (32)
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is not linear. This implies that all excitations in the
lowest band acquire quasi-particle character and the
role of interactions is strongly enhanced;

(II) for small enough gn, one can neglect the density de-
pendence of δ and use the approximation κ−1 = g̃n,
where g̃ was defined in (14) and takes the form (21)
in the tight binding regime. This yields

�ωq ≈
√

2 δ0 sin2

(
qd

2�

)[
2 δ0 sin2

(
qd

2�

)
+ 2g̃n

]
,

(33)
which was first obtained in [22] (see also [11,23,24]).
Equation (33) has a form similar to the well-
known Bogoliubov spectrum of uniform gases, the
energy 2δ0sin2 (qd/2�) replacing the free particle en-
ergy q2/2m.

The spectrum of elementary excitations can be mea-
sured by exposing the system to a weak perturbation
transferring momentum p and energy �ω. The response
of the system is described by the dynamic structure fac-
tor S(p, ω) which, in the presence of a periodic potential
takes the form

S(p, ω) =
∑

j

Zj(p)δ(ω − ωj(p)), (34)

where Zj(p) are the density excitation strengths relative to
the jth band and �ωj(p) are the corresponding excitation
energies, defined by the solutions of equations (25, 26).
Note that p, here assumed to be along the optical lattice
(z-axis), is not restricted to the first Brillouin zone, being
the physical momentum transferred to the system by the
external probe. In this respect, it is important to notice
that, while the excitation energies �ωj(p) are periodic as
a function of p, this is not true for the strengths Zj(p).
Starting from the solution of equations (25, 26), the exci-
tation strengths Zj(p) can be evaluated using the standard
prescription of Bogoliubov theory (see for example [25])

Zj(p) =

∣∣∣∣∣
∫ d/2

−d/2

[
u∗

jq(z) + v∗jq(z)
]
eipz/�ϕ(z)dz

∣∣∣∣∣
2

, (35)

where q belongs to the first Brillouin zone and is fixed by
the relation q = p+2	qB with 	 integer and the Bogoliubov
amplitudes are normalized according to

∫ d/2

−d/2 |ujq(z)|2 −
|vjq(z)|2dz = 1. The dynamic structure factor of a
Bogoliubov gas in an optical lattice has been recently cal-
culated in [3]. It is found that for an interacting system
the strength towards the first band develops an oscillat-
ing behaviour as a function of the momentum transfer,
vanishing at even multiples of the Bragg momentum due
to the presence of a phononic regime. Moreover, in the
presence of interactions, the strength Z1 towards the first
bands vanishes as

√
δκ in the limit of very deep lattices,

due to the quasi-particle character of the excitations in the
whole band. Finally, the suppression of the static structure
factor at small momenta, due to phononic correlations, is
significantly enhanced by the presence of the lattice.

3.1 Link with the Josephson formalism

In this section, we show that the results for the excita-
tion spectrum in the tight binding limit obtained in the
previous section (see Eq. (29)) can be recovered using a
different formalism based on the Josephson equations of
motion. These can be derived starting from the ansatz for
the condensate

ϕ(z, t) =
∑

l

fl(z; nl)

√
nl(t)

n
eiSl(t), (36)

where for sufficiently deep optical lattices the wavefunc-
tion fl is localized at site l and extends only over nearest-
neighbouring sites, nl is the time-dependent average den-
sity at site l where the average is taken over the lth
well, n is the average equilibrium density and Sl is the
phase of the condensate at site l. At equilibrium the func-
tions fl coincide with the Wannier functions f(z − ld)
introduced before. In general, they depend on the den-
sity at the corresponding site, as indicated in equa-
tion (36), and hence might themselves implicitly depend
on time. Furthermore, these functions are chosen such that∫

f∗
l′(z; nl′)fl(z; nl)dz = 0 for l �= l′ and 1 for l = l′.
When excitations are present, the phases Sl at differ-

ent sites will be different from each other, indicating the
presence of a current. Using the time-dependent Gross-
Pitaevskii formalism one can derive the following equa-
tions of motion for the density and phase variables

ṅl =
∑

l′=l+1,l−1

δl,l′

�

√
nlnl′ sin(Sl − Sl′), (37)

Ṡl = −µl

�
+

∑
l′=l+1,l−1

δl,l′
µ

2�

√
nl′

nl
cos(Sl − Sl′), (38)

where µl =
∫

fl

[
−�

2∂2
z

2m + V (z) + gnd|fl|2
]
fldz, while the

time-dependent tunneling parameters δl,l′ and δl,l′
µ are di-

rectly related to the overlap between two neighbouring
wavefunctions

δl,l′ = −2
∫

dz

[
fl

(
−�

2∂2
z

2m
+ V

)
fl′

+ gnld fl|fl|2fl′ + gnl′d fl|fl′ |2fl′

]
, (39)

δl,l′
µ = δl,l′ − 4gnld

∫
fl|fl|2fl′dz. (40)

Note that at equilibrium δl,l′ = δ and δl,l′
µ = δµ, where δ

and δµ have been previously defined in equation (17) and
after equation (18). At equilibrium they do not depend
on the sites l and l′ since the wavefunctions fl are all the
same.

In order to obtain the excitation frequencies, one has to
linearize equations (37, 38) around equilibrium: in equa-
tion (37) it is enough to take the value of δl,l′ at equilib-
rium; instead in equation (38) one has to expand δl,l′

µ to
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first order in the density fluctuations ∆nl

δl,l′
µ ≈ δµ +

∂δl,l′
µ

∂nl
∆nl +

∂δl,l′
µ

∂nl′
∆nl′ . (41)

This procedure allows us to recover exactly equation (29).
Instead, if one sets

√
nlnl′ = nl from the beginning one ob-

tains result (32) for the excitation spectrum. This proves
that the first term in the brackets of equation (29) has its
physical origin in the quantum pressure, because it arises
from the difference in population nl − nl′ between neigh-
bouring sites.

Note that in the form (37, 38), the equations of motion
differ from commonly used Josephson equations in that
the quantities δl,l′ and δl,l′

µ can be time-dependent. In the
usual treatment, these quantities are calculated at equi-
librium and one approximates δ = δµ. The resulting sim-
plified equations are equivalent to the discrete nonlinear
Schrödinger equation used for example in [26] to investi-
gate nonlinear phenomena like solitons and breathers. An
approach equivalent to the Josephson formalism presented
in this section, based on the ansatz (36), has been de-
veloped independently in [13], where the approximations
involved are discussed in detail.

For a system confined in the radial direction, contain-
ing N atoms per site, it is also convenient to introduce
the Josephson energy EJ = Nδ and the charging energy
EC = 2∂µ/∂N = 2κ−1/N which play an important role
in the physics of Josephson oscillations.

4 Quantum fluctuations and depletion
of the condensate

The presence of the optical potential may introduce phase
fluctuations which reduce the degree of coherence of the
sample. This effect is known to yield spectacular conse-
quences in 3D optical lattices, giving rise to a transition
from the superfluid to the Mott insulator phases. Also in
the presence of a 1D optical lattice one can predict in-
teresting effects. First of all, the quantum depletion of
the condensate increases as a consequence of the increase
of the effective coupling constant (14) and of the effective
mass. Eventually, if the tunneling rate becomes very small,
the system reduces to a 1D chain of Josephson junctions
with a modification of the behaviour of long range order
affecting the phase coherence of the system.

Let us consider the problem in a 3D box, with the op-
tical lattice oriented along the z-direction (note that the
quantum depletion of the condensate has been calculated
in [23,24] for different geometries). The quantum num-
bers of the elementary excitations are the band index j
and the quasi-momentum q along the z-direction and the
momenta px and py in the transverse directions. The quan-
tum depletion of the condensate can be calculated using
the Bogoliubov result

∆Ntot

Ntot
=

1
Ntot

∑
j

∑
q,px,py

∫ d/2

−d/2

dz

∫
dx

∫
dy |vj,q,px,py(r)|2,

(42)

where Ntot denotes the total number of atoms, ∆Ntot is
the number of non-condensed particles and we sum over all
bands j, over the quasi-momenta q in the first Brillouin
zone and the momenta of elementary excitations in the
transverse directions px, py allowed by the periodic bound-
ary conditions. Equation (42) describes correctly the de-
pletion when Bogoliubov theory is applicable.

In the thermodynamic limit, the depletion can be
calculated replacing the sum with an integral in equa-
tion (42). In the uniform case, the main contribution to
the depletion is given by quasi-particles with q2+p2

x+p2
y ≈

(mc)2. Yet the convergence is very slow and the integral is
saturated by momenta much higher than mc [27], where
the dispersion exhibits the quadratic p2/2m behaviour.
This implies that in the presence of the lattice it is possi-
ble to calculate the depletion as in the uniform case, pro-
vided all the quasimomenta relevant for the calculation of
the depletion lie within the first Brillouin zone. This zone
should include a region beyond the phononic regime where
the dispersion goes like q2/2m∗. This condition is satisfied
if the inequality m∗c � qB (or equivalently κ−1 � δ),
corresponding to weak interactions and relatively low val-
ues of s, is fulfilled. Under this condition, we can replace
q2/2m → q2/2m∗ and g → g̃ and the quantum depletion
takes the generalized Bogoliubov form

∆Ntot

Ntot
=

8
3

1
π1/2

√
m∗

m
(ã3n)1/2 , (43)

where we have defined ã through the relation g̃ =
4π�

2ã/m. In this regime, the depletion will not be quan-
titatively very different from the corresponding one in the
absence of the lattice. The situation becomes more inter-
esting for larger optical potential depth, where the lattice
is expected to affect the coherence properties of the sys-
tem.

In the regime of deep optical lattices, one can neglect
contributions to the depletion from higher bands, because
high energy excitations are particle-like. We are then al-
lowed to restrict the sum in (42) to j = 1. In the tight
binding limit, one can easily generalize expressions (27, 28)
for the Bogoliubov amplitudes in the lowest band to ac-
count for transverse excitations

uq,px,py(r) =
ei(pxx+pyy)/�

L
Uq,px,py

∑
l

eiqld/�f(z−ld),

(44)

vq,px,py(r) =
ei(pxx+pyy)/�

L
Vq,px,py

∑
l

eiqld/�f(z−ld),

(45)

where f(z) is the same function as in (15) and L is the
transverse size of the system. Neglecting for simplicity
contributions arising from n∂δ/∂n, equation (29) can be
generalized in a straightforward way to

�ωq ≈
√

ε0(p⊥, q)(ε0(p⊥, q) + 2κ−1), (46)

where ε0(p⊥, q) = p2
⊥/2m + 2δ sin2(qd/2�) and p2

⊥ = p2
x +

p2
y. For the amplitudes Uq,px,py and Vq,px,py we find the
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result

Uq,px,py , Vq,px,py =
ε0 ± �ω

2
√

�ωε0

, (47)

satisfying the normalization condition

∫ d/2

−d/2

dz

∫
dx

∫
dy
[|uq,px,py |2 − |vq,px,py |2

]
= 1.

We replace again the sum (42) by an integral. This cor-
responds to considering the thermodynamic limit in all the
3 directions. Inserting equations (45, 47), the calculation
can be performed analytically and gives

∆Ntot

Ntot
= 2

ã

d
G

(
δ

g̃n

)
, (48)

where G(b) = 1/2−√
b/π+b/2−arctan(

√
b)(1+b)/π and,

for simplicity we have used the approximation κ−1 = g̃n
for the compressibility. Since in the tight binding regime
the ratio δ/g̃n is usually small and becomes smaller and
smaller with increasing lattice depth, the result (48) con-
verges to

∆Ntot

Ntot
=

ã

d
· (49)

Result (49) coincides with the 2D depletion of a disc of
axial extension d and scattering length ã, where the axial
confinement is so strong that the motion is frozen along
the z-direction. In this limit the actual 3D system is de-
scribed as a series of separated 2D discs. It is interesting
to note that the depletion remains finite even if the tun-
neling parameter δ → 0. The reason is that before taking
the limit δ → 0 we have taken the continuum limit in
the radial direction, which forces the system to be coher-
ent. In this case the ratio EJ/EC = Nκδ/2 between the
Josephson energy and the charging energy (see end of the
last section) is large and hence coherence is maintained
across the whole sample. A different result would be ob-
tained by fixing N and considering the limit δ → 0. We
point out that the dependence on the interaction strength
is stronger in the 2D case than in the 3D case, since the
depletion scales like ã (2D) rather than ã3/2 (3D).

From equation (48), one recovers the 3D result (43) in
the limit δ/g̃n → ∞. This limit is by the way only of aca-
demic interest, since in the tight binding limit, where (48)
was derived, the ratio δ/g̃n becomes large only if interac-
tions are vanishingly small (for example, for gn = 0.02ER

and s = 10 one finds δ/g̃n ≈ 1).
Under the assumption made in the continuum approx-

imation, the depletion is always very small and is upper-
bounded by the quantity ã/d. If the continuum approxi-
mation in the radial direction is not applicable and it is
crucial to take into account the discretization of the sum
over the quantum numbers px and py in equation (42),
the results are different. This is the case if the number of
particles in each well is sufficiently small, or if the longitu-
dinal size of the system, fixed by the number of wells Nw,
is sufficiently large. The limiting case takes place when
the contribution arising from the term with px = py = 0

is the dominant one in equation (42). In this case the sys-
tem exhibits typical 1D features and one finds the result

∆Ntot

Ntot
= ν ln

(
4Nw

π

)
, (50)

where

ν =
m∗cd
2π�N

· (51)

Here, N is the number of particles per well. The depen-
dence on the interaction strength in the 1D case is stronger
than in the 2D and 3D cases, since c =

√
g̃n/m∗ and hence

the depletion scales like ã1/2. This should be compared
with the ã and ã3/2 dependence in 2D and 3D respec-
tively.

The transition to the 1D character of the fluctuations
can be identified by the condition

ã

d
≈ ν ln

(
4Nw

π

)
, (52)

which, for gn = 0.2ER, Nw = 200 and N = 500, is pre-
dicted to occur around s = 30 where the left and right
side of the inequality become equal to ∼ 4%.

Result (50, 51) is strictly linked to the coherence the-
ory of 1D systems, where the off-diagonal 1-body density
exhibits the power law decay

n(1)(|r − r′|) → |r − r′|−ν (53)

at large distances. If the exponent ν is much smaller
than 1, the coherence survives at large distances and the
application of Bogoliubov theory is justified. For a super-
fluid, the value of ν is fixed by the hydrodynamic fluctu-
ations of the phase and is given, at T = 0, by the expres-
sion (51) [28,29]. In terms of the Josephson parameters
(see Sect. 3.1) one can also write ν =

√
EC/8π2EJ . One

can easily check that, unless N is of the order of unity
or m∗ is extremely large, the value of ν always remains
very small. When the exponent of the power law takes the
value ν = 0.14, corresponding to EJ = 1.62EC , the 1D
system is expected to exhibit the Bradley-Doniach phase
transition to an insulating phase where the 1-body density
matrix decays exponentially [30]. Note however that be-
fore this transition is reached the depletion (50) becomes
large and hence Bogoliubov theory is no longer applicable.

To give an example, we set gn = 0.2ER, N = 200
and Nw = 500 describing a setting similar to the exper-
iment of [5]. Bogoliubov theory predicts a depletion of
≈ 0.6% in the absence of the lattice (s = 0). At a lattice
depth of s = 10 the evaluation of equation (42), using the
tight binding results (45, 47), and keeping the sum dis-
crete yields a depletion of ≈ 1.7%. On the other hand,
equation (48), obtained by replacing the sum in equa-
tion (42) by an integral, yields a depletion of ≈ 2%, in
reasonable agreement with the full result ≈ 1.7%. The 2D
formular (49) instead yields ≈ 2.9% depletion, revealing
that the system is not yet fully governed by 2D fluctua-
tions. With the same choice of parameters, the power law
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exponent (51) has the value ν = 0.001 and the 1D deple-
tion (50) is predicted to be ≈ 0.6%, significantly smaller
than the full value ≈ 1.7%. This reveals that the sum (42)
is not exhausted by the terms with px = py = 0. In con-
clusion, one finds that for this particular setting, the char-
acter of fluctuations is intermediate between 3D and 2D,
and still far from 1D. In particular, from the above es-
timates it emerges that in order to reach the conditions
for observing the Bradley-Doniach transition one should
work at much larger values of s.

5 Applications to harmonically trapped
condensates

The results obtained in the previous sections can be used
to describe harmonically trapped condensates in the pres-
ence of an optical lattice: if the trapped condensate is
well described by the TF-approximation in the absence of
the lattice and if the axial size of the condensate is much
larger than the interwell separation d, then one can gen-
eralize the local density approximation (LDA) to describe
harmonically trapped condensates in a lattice. Basically,
the idea is to introduce the average density

nl(r⊥) =
1
d

∫ ld+d/2

ld−d/2

n(r⊥, z) dz, (54)

where n(r⊥, z) is the microscopic density and l is the index
of the lattice sites. Within the LDA, the chemical potential
is given by

µl = µopt(nl(r⊥)) +
m

2
(ω2

z l2d2 + ω2
⊥r2

⊥) , (55)

where µopt(nl(r⊥)) is the chemical potential calculated at
the average density nl(r⊥) in the presence of the optical
potential and ωz, ω⊥ are the axial and transverse frequen-
cies of the harmonic trap respectively. Equation (55) fixes
the radial density profile nl(r⊥) at the lth site once the
value of µl or, equivalently, the number of atoms

Nl = 2πd

∫ Rl

0

r⊥nl(r⊥)dr⊥, (56)

occupying the lth well is known. In equation (56), Rl is
the radial size of the condensate at the lth site, fixed by
the value of r⊥ where the density nl(r⊥) vanishes. This
procedure avoids the full calculation of the microscopic
density n(r⊥, z).

When equilibrium is established across the whole sam-
ple we have µl = µ for all l. Making use of this fact and
employing that

∑
l Nl = Ntot we can find the dependence

of µ on the total number of particles Ntot. This procedure
also yields the well occupation numbers Nl and the num-
ber of sites occupied at equilibrium. In the simple case in
which the chemical potential exhibits a linear dependence
on density µopt = g̃n + const. one obtains for the radial
density profile [31]

nl(r⊥) =
1
g̃

(
µ − m

2
ω2

z l2d2 − m

2
ω2
⊥r2

⊥
)

, (57)

where the chemical potential, apart from a constant,
is given by µ = �ω̄(15Ntota g̃/ahog)2/5/2 with ω̄ =
(ωxωyωz)1/3, aho =

√
�/mω̄. The well occupation num-

bers and transverse radii are given by

Nl = N0

(
1 − l2/l2m

)2
, (58)

Rl = R0

(
1 − l2/l2m

)1/2
, (59)

where lm =
√

2µ/mω2
zd

2 fixes the number 2lm + 1 of oc-
cupied sites, N0 = 15N/16lm and R0 =

√
2µ/mω2

⊥. The
increase of µ due to the optical lattice (g̃ > g) implies an
increase of the radii Rl. This effect has been observed in
the experiment of [6].

The LDA-based approach not only permits to calcu-
late equilibrium properties, but also dynamic features of
macroscopic type. To this purpose one can generalize the
hydrodynamic equations of superfluids by taking into ac-
count the effects of the lattice. Also in this case one can
use the concept of the average density profile nl(r⊥) as
defined in equation (54). Furthermore, one can replace
the discrete index l by the continuous variable z = ld. In
this way, one can define a smoothed macroscopic average
density profile nM (r⊥, z). The dynamics we are interested
in then consists of the evolution of the macroscopic den-
sity nM and of the macroscopic superfluid velocity field v
whose component along the direction of the lattice is de-
fined by the average

vz =
1
D

∫ D/2

−D/2

dz

[
�

m
∂zS

]

=
�

m

1
D

(S(D/2) − S(−D/2)) . (60)

Here S is the phase of the order parameter and D is a
length longer than d, but small compared to the size of
the system as well as to the wavelength of the collective
oscillations. On this length scale, the effect of Vho can be
neglected and all the macroscopic variables are constant.
Hence the phase difference in (60) can be calculated using
Bloch states with quasimomentum k (see Eq. (9)) and
one finds the result vz = k/m [32]. Using this result and
the fact that the energy change per particle due to the
presence of a small current is k2/2m∗ = m2v2

z/2m∗, the
use of the LDA yields the result

E =
∫

dr
[
m

2
nMv2

x +
m

2
nMv2

y +
m

2
m

m∗nMv2
z

+ e(nM ) + nMVho

]
, (61)

for the total energy of the system. Here e(nM ) is the equi-
librium energy per unit volume calculated at the aver-
age density nM in the absence of the harmonic trap and
both nM and vz are now functions of r⊥, z and t.
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Starting from the functional (61) we can derive the
hydrodynamic equations

∂

∂t
nM +∂x(vxnM )+∂y(vynM )+∂z

( m

m∗ vznM

)
= 0 (62)

m
∂

∂t
v + ∇

(
Vho + µopt(nM ) +

m

2
v2

x +
m

2
v2

y

+
∂

∂nM

(( m

m∗nM

) m

2
v2

z

))
= 0 , (63)

where Vho = m(ω2
zz2 + ω2

⊥r2
⊥)/2 is the harmonic po-

tential and where we have used the relationship µopt =
∂e(nM )/∂nM . Equations (62, 63) generalize the hydro-
dynamic equations derived in [17] to situations in which
the effective mass is density dependent and the chemi-
cal potential µopt has a nonlinear density dependence (see
Sect. 2). They can be further generalized to account for
larger condensate velocities [12].

The hydrodynamic equations serve to determine the
frequencies of collective oscillations associated with a den-
sity dynamics of the form nM (r, t) = n̄M (r) + e−iωtδn(r).
Here, δn(r) denotes a small deviation from the equilib-
rium average density n̄M (r) that is associated with a small
velocity field v. Hence, it is appropriate to linearize equa-
tions (62, 63) yielding

ω2δn + ∂r⊥

[
n̄M

m
∂r⊥

(
∂µopt

∂n

∣∣∣∣
n̄M

δn

)]

+ ∂z

[
n̄M

m∗ ∂z

(
∂µopt

∂n

∣∣∣∣
n̄M

δn

)]
= 0 . (64)

This second order equation involves the derivative
∂µopt/∂n|n̄M

directly related to the inverse compressibil-
ity κ−1 (see Eq. (2)). In general, the solution of equa-
tion (64) should be found numerically because the density
dependence of m∗ and ∂µopt/∂n is not known in an an-
alytic form. Yet, for small enough densities the density-
dependence of m∗ can be neglected and ∂µopt/∂n|n̄M

= g̃
as was discussed in Section 2. In this case, the frequen-
cies of the collective oscillations can be calculated ana-
lytically [17]. In particular, they can be obtained from the
values in the absence of the lattice [33] by simply rescaling
the trapping frequency along z

ωz →
√

m

m∗ωz. (65)

This result was obtained theoretically for the dipole os-
cillation in the tight binding regime in [5] and has been
confirmed experimentally both for the dipole [5] and
quadrupole oscillation [34].

The LDA defined by (55) can also by employed to
study Bogoliubov excitations occurring on a length scale
much smaller than the size of the system. Under this con-
dition, one can define a local Bogoliubov band spectrum

given by �ωj(q; nM (r)) where nM (r) is the locally av-
eraged density introduced above. The Bogoliubov band
spectrum can be probed by measuring the dynamic struc-
ture factor S(p, ω), related to the linear response of the
system to an external perturbation transferring momen-
tum p and energy �ω. In LDA, the dynamic structure
factor reads [35]

SLDA(p, ω) =
∫

drnM (r)S(p, ω; r) , (66)

where S(p, ω; r) is the dynamic structure factor (34) cal-
culated at density nM (r) in the absence of harmonic trap-
ping. As a result of the averaging implied by equation (66),
the dynamic structure factor of the system is not any more
given by a series of delta-functions as in the absence of
the harmonic trap, but instead consists of resonances of
finite width. The validity of the LDA to describe the lin-
ear response of the trapped condensate in the absence of
a lattice has been confirmed by Bragg spectroscopy ex-
periments where the transferred momentum was larger
than the inverse of the system size and the duration of
the Bragg pulse was small compared to the inverse of
the trapping frequencies [36,37]. Experiments and calcu-
lations which investigate the regime beyond the validity
of the LDA have been recently carried out [37,38].

In the absence of harmonic trapping, the solution of
the hydrodynamic equations (62, 63) permits to calculate
the propagation of sound waves not only in condensates at
rest, yielding result (6) for the sound velocity, but also in
condensates moving slowly with respect to the lattice. Let
us start from stationary solution with macroscopic veloc-
ity v̄z , corresponding to quasimomentum k = mv̄z , with
k � qB, and let us consider small changes of the veloc-
ity field and of the density with respect to the stationary
values: vz = v̄z + δvz , nM = n̄M + δnM . By linearizing
equations (62, 63) and looking for solutions oscillating like
∼ e−i(qz−ωt), one finds at first order in k

ω = c|q| + q
k

m∗
µ

, (67)

where 1/m∗
µ = ∂(n/m∗)/∂n and c is the sound veloc-

ity in the condensate at rest (see Eq. (6)). The quan-
tity m∗

µ gives the k = 0 curvature of the lowest chemi-
cal potential band (see Eq. (12) with j = 1) according to
µ(k) = µ(0) + k2/2m∗

µ for k → 0. Equation (67) gener-
alizes the usual behaviour of the sound velocity in slowly
moving frames to account for the presence of the optical
lattice. The significance of m∗

µ for the excitation spectrum
has been pointed out for any optical potential depth for
small q and any k in [12] and in the tight binding regime
for any q and any k in [13,14].

6 Summary

We have studied Bloch-wave solutions of the Gross-
Pitaevskii equation in the presence of a one-dimensional
optical lattice. In particular, we have calculated the band
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structure of both stationary (“Bloch bands”) and time-
dependent linearized (“Bogoliubov bands”) solutions. We
have discussed these solutions for different choices of the
lattice depth sER and the two body interaction parame-
ter gn. Special attention has been paid to the behaviour
of the compressibility and of the effective mass. We have
shown that the compressibility of the system is reduced
by the presence of the lattice and that its inverse is
approximately linear in the density for low enough gn or
high s. In these regimes, the compressibility and the chem-
ical potential can be expressed in terms of an effective
coupling constant g̃ > g, which accounts for the squeezing
of the condensate wavefunction in each well. Concerning
the effective mass we have found that two body interac-
tions give rise to a significant density dependence which
decreases its value with respect to the prediction for the
non-interacting system. The compressibility and the ef-
fective mass permit to calculate the sound velocity whose
value is found to decrease as a function of the lattice depth,
reflecting the exponential increase of the effective mass.
For the tight binding regime, we have complemented the
numerical results by analytic expressions.

Concerning the Bogoliubov bands, we have found that
in a deep lattice the excitations in the lowest band acquire
a strong quasi-particle character in the whole Brillouin
zone, characterized by Bogoliubov amplitudes u ∼ v. In
the tight binding regime, analytic expressions for the low-
est Bogoliubov band and the corresponding Bogoliubov
amplitudes have also been reported.

In Section 4, we have presented results for the quan-
tum depletion of the condensate. In particular, we have
found that in a deep lattice the quantum fluctuations of
the condensate acquire 2D character, reflecting the trans-
formation of the system into a series of two-dimensional
discs. As a consequence, the quantum depletion increases,
but remains small, provided the coherence between the
discs is maintained. If the lattice depth is increased fur-
ther, 1D quantum fluctuations become important. Esti-
mates of the corresponding effects with realistic values of
the parameters have been presented.

Finally, we have demonstrated the use of a local den-
sity approximation to study macroscopic static and dy-
namic properties of harmonically trapped systems in the
presence of an optical lattice.

In conclusion, Bose-Einstein condensates in optical lat-
tices share important analogies with solid state systems.
Differences arise due to the presence of two body inter-
actions giving rise to important new features even in the
coherent regime where most particles are in the conden-
sate. The density dependence of the effective mass, as well
as the distinction between Bloch, chemical potential and
Bogoliubov bands are some examples discussed in this pa-
per. Natural developments of the present work concern the
study of the dynamics built on top of moving condensates
where dynamic instabilities can be encountered [10–14].
Another important direction is the study of nonlinear ef-
fects which might sizably affect the propagation of sound
in the presence of an optical lattice.
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by the Ministero dell’Istruzione, dell’Università e della Ricerca
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T. Esslinger, Phys. Rev. Lett. 87, 160405 (2001)

8. M. Machholm, A. Nicolin, C.J. Pethick, H. Smith,
cond-mat/0307183

9. O. Morsch, J.H. Müller, M. Cristiani, D. Ciampini,
E. Arimondo, Phys. Rev. Lett. 87, 140402 (2001);
M. Cristiani, O. Morsch, J.H. Müller, D. Ciampini,
E. Arimondo, Phys. Rev. A 65, 063612 (2002)

10. B. Wu, Q. Niu, Phys. Rev. A 64, 061603 (2001)
11. A. Smerzi, A. Trombettoni, P.G. Kevrekidis, A.R. Bishop,

Phys. Rev. Lett. 89, 170402 (2002)
12. M. Machholm, C.J. Pethick, H. Smith, Phys. Rev. A 67,

053613 (2003)
13. A. Smerzi, A. Trombettoni, Chaos 13, 766 (2003); A.

Smerzi, A. Trombettoni, Phys. Rev. A 68, 023613 (2003)
14. C. Menotti, A. Smerzi, A. Trombettoni, New J. Phys. 5,

112 (2003)
15. B. Wu, Q. Niu, Phys. Rev. A 61, 023402 (2000); B. Wu,

R.B. Diener, Q. Niu, Phys. Rev. A 65, 025601 (2002);
D. Diakonov, L.M. Jensen, C.J. Pethick, H. Smith,
Phys. Rev. A 66, 013604 (2002); E.J. Mueller, Phys. Rev.
A 66, 063603 (2002)

16. D.I. Choi, Q. Niu, Phys. Rev. Lett. 82, 2022 (1999)
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